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Уважаемые члены жюри! 

 

Задачи, предложенные школьникам для решения на олимпиаде, не стандартные и 

достаточно сложные. Предложенные здесь варианты путей 

решений не являются единственно возможными. Участники 

олимпиады могут предложить свои способы решения. Если 

эти способы приводят к правильным ответам и физически 

обоснованы, то задача (или ее отдельные пункты) должны 

оцениваться максимальными баллами.  

Каждое задание сопровождается Листами ответов, в 

которые участники олимпиады должны занести 

окончательные результаты.  

Если окончательный результат не занесен в Лист 

ответов, но содержится в основном решении, то этот 

результат также необходимо оценивать.  

Не забывайте, что Вы должны оценивать не только конечные ответы, но и 

отдельные правильные шаги в ходе решения!  

 

 

Уважаемые коллеги! Не жалейте баллов (если, конечно, есть за что!) для наших 

талантливых школьников! 
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Задание 10-1. Разминка 

 
   

 

 

 

 

1. «Посмотри и объясни»  На Рис. 1 изображен популярный  физический 

опыт.  Вырезанное из пластиковой бутылки кольцо поставили на широкое 

горлышко пустой бутылки. На вершину кольца положили небольшую 

монету (или гайку) (см. Рис. 1). Резким горизонтальным ударом линейки 

выбьем пластиковое кольцо из-под монеты. Что, по вашему мнению, 

произойдет с монетой  далее?  Проанализируйте Рис. 1, в Листе ответов 

кратко опишите результат данного опыта и обоснуйте его с физической 

точки зрения. 

 

  

2. «Путь частицы» Частица, движущаяся  прямолинейно и равноускоренно (равнопеременно), 

за промежуток времени 𝑡1  прошла путь  𝑙1, а за промежуток 

времени  𝑡2 = 2𝑡1 прошла путь  𝑙2 = 4𝑙1/3. Какой путь 𝑙3 пройдет 

частица за промежуток времени  𝑡3 = 3𝑡1? Чему будет равна 

скорость  𝜐  частицы в конце этого промежутка времени? 

 

 

3. «Зеркальный шар» Световой луч 𝐴𝐵 (Рис. 3) от неподвижного лазера Л ориентирован 

«горизонтально». Зеркальный шар радиусом 𝑅 = 12 см движется 

перпендикулярно световому лучу 𝐴𝐵 («сверху вниз») со 

скоростью 𝜐 = 1,5 м/с. При движении зеркального шара 

отраженный луч поворачивается относительно «неподвижного» 

падающего луча. Чему равна угловая скорость 𝜔 вращения 

отраженного луча в момент, когда падающий световой луч 𝐴𝐵 

ориентирован вдоль диаметра  𝐵𝐶  (см. Рис. 3) зеркального шара?  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2 

𝜐Ԧ0 

Рис. 3 

𝐴 𝐵 Л 𝐶 

𝜐Ԧ 
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Возможные решения: 
 

Задание 10-1.  «Разминка» 
 

 

1. «Посмотри и объясни» На Рис. 1 изображен известный опыт по механике, демонстрирующий 

особенности деформации тела при механическом воздействии.  

 При горизонтальном ударе линейкой «изнутри» пластиковое 

кольцо будет испытывать деформацию растяжения  в 

горизонтальном направлении (см. Рис. 1). Поскольку периметр 

кольца при ударе остается практически неизменным, то в 

вертикальном направлении кольцо фактически  мгновенно 

«сожмется» (см. Рис. 1).  

 Эффект быстрого сжатия легкого пластикового кольца приведет 

к тому, что монета на мгновение «зависнет» в воздухе и 

«оторвется» от поверхности кольца.  

 За это «мгновение» кольцо улетит вместе с  линейкой по горизонтали, а монета свободно 

упадет в бутылку и окажется на ее дне. 

  Таким образом, качественный анализ данного физического явления приводит к выводу, что 

после удара линейкой «изнутри» монета практически свободно упадет в бутылку (см. Рис. 1). 

 После теоретического тура несложно провести этот забавный эксперимент, и убедится, что 

«физика рулит», т.е. монета в данном случае действительно окажется на дне бутылки, в полном 

соответствии с нашими теоретическими выводами (а не предсказаниями!, ☺).  

 Как видим, результат этого опыта существенно отличается от варианта горизонтального удара 

«со стороны» (см. Задание 9-1.), когда монета улетела по параболе. 

 Наблюдаемое различие результатов опыта объясняется различными направлениями 

деформации пластикового кольца при различных точках приложения горизонтального удара 

(удар «изнутри», удар «снаружи»). В зависимости от направления деформации кольца в системе 

возникают различающиеся силы, логично приводящие к различным механическим движения 

монеты в пространстве. 
 

2. «Путь частицы» Поскольку путь частицы за второй промежуток времени  𝑡1  уменьшается (в 

три раза), то понятно, что  ускорение  𝑎  движущейся частицы «направлено против» её начальной 

скорости  𝜐0. Тогда  для промежутка времени  𝑡1  справедливо равенство 

𝑙1 = 𝜐0𝑡1 −
𝑎𝑡1

2

2
 .                                                              (1) 

 Аналогично для промежутка времени   𝑡2 = 2𝑡1  имеем 

 𝑙2 =
4𝑙1

3
= 2𝜐0𝑡1 − 2𝑎𝑡1

2 .                                                           (2) 

 Избавляясь от  𝑙1  в системе уравнений (1) – (2), получим выражение (𝑡1 = 0  отбрасываем) 

𝑡1 =
𝜐0

2𝑎
 .                                                                     (3) 

 Тогда для скорости частицы в момент времени  2𝑡1 имеем 

𝜐(2𝑡1) = 𝜐0 − 𝑎𝑡 = 𝜐0 − 2𝑎
𝜐0

2𝑎
= 0 .                                           (4) 
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 Из (4) следует, что через промежуток времени  𝑡 = 2𝑡1 частица остановится и далее начнет 

движение «назад». Следовательно, за третий промежуток времени  𝑡1 частица пройдет такой же 

путь, как и за второй (
𝑙1

3
), только «в другую сторону».   

 Теперь легко сообразить, что её путь за промежуток времени  3𝑡1 частица пройдет путь 

𝑙3 = 𝑙2 +
𝑙1

3
=

5𝑙1

3
 .                                                           (5) 

 Скорость частицы в конце движения (на третьем промежутке времени) найдем из равенств 
𝑙1

3
=

0+𝜐

2
𝑡1      ⟹      𝜐 =

2𝑙1

3𝑡1
 .                                                  (6) 

 

3.  «Зеркальный шар» Согласно принципу относительности 

Галилея (Эйнштейна), все инерциальные системы отсчета (ИСО) 

тождественны в том смысле, что решать задачу можно в любой из 

них.  

 В данном случае удобно перейти в инерциальную систему 

отсчета, связанную с движущимся шаром. В ней шар будет 

«покоится», а лазер (и луч 𝐴𝐵) – двигаться «снизу вверх» с 

постоянной скоростью  𝜐.    

 При прохождении падающего луча через диаметр 𝐵𝐶 отраженный луч будет совпадать с 

падающим лучом. 

  За малый промежуток времени  ∆𝑡  лазер сместится по вертикали на малое расстояние (Рис. 2)  

ℎ = 𝜐∆𝑡 .                                                              (1) 

 При этом нормаль к шару повернется на малый угол (угол падения) 

∆𝛼 =
ℎ

𝑅
=

𝜐∆𝑡

𝑅
.                                                          (2) 

 Поскольку угол отражения  ∆𝛽 равен углу падения ∆𝛼 (закон отражения света), отраженный 

луч за это время повернулся на угол 

∆𝜑 = ∆𝛼 + ∆𝛽 = 2∆𝛼 =
2ℎ

𝑅
=

2𝜐∆𝑡

𝑅
 .                                     (3) 

 Соответственно, угловая скорость отраженного луча за время поворота  

𝜔 =
∆𝜑

∆𝑡
=

2𝜐∆𝑡

𝑅∆𝑡
=

2𝜐

𝑅
 .                                                      (4) 

 Расчет по (4) дает 

𝜔 =
2∙1,5

0,12
 (

рад

с
) = 25 

рад

с
 .                                                 (5) 

В соответствии с правилами округления (см. данные условия) окончательный ответ 

приводим с  точностью до двух значащих цифр. 

 

 

 

 

 

 

 

 

Рис. 2 

𝑅 

ℎ 

∆𝛼 
∆𝛼 ℎ 

∆𝛽 
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Задание 10-2.  Железнодорожный мост 
 

 

 

Любые инженерные конструкции 

предварительно точно рассчитываются, а их 

поведение в критических ситуациях 

многократно моделируется на предмет 

надежности и соответствия требованиям 

безопасности.  

Рассмотрим длинный однопролётный 

железнодорожный мост (Рис. 1), по которому 

проходит короткий поезд с одинаковыми вагонами.  

В опорах (устоях) 𝐴 и 𝐵 моста (см. Рис. 1) установлены датчики «избыточного» веса 

(«избыточной реакции») для отслеживания изменения силы давления моста на данную опору при 

прохождении поезда (т.е. они не учитывают 

собственный вес моста и вес поезда на насыпи).  

При расчетах будем считать, что масса 

единицы длины (линейная плотность) поезда  𝜆 =

(
∆𝑚

∆𝑙
) = 𝑐𝑜𝑛𝑠𝑡  есть величина известная и 

постоянная. При таком подходе поезд можно 

считать однородной «движущейся цепочкой». 

В рамках данного задания вам предстоит более подробно разобрать процесс прохождения 

поезда по мосту с инженерной точки зрения, определить изменения динамической нагрузки на 

каждую из опор при этом. 
 

 

Справочные данные и параметры рассматриваемой системы: ускорение свободного 

падения  g = 9,81 м/с2; трением и сопротивлением воздуха в данном задании пренебречь. 
 

 

Часть 1. Балка на опорах  
 

Прежде чем рассматривать движение поезда по однородному мосту, рассмотрим «пустой» 

мост, без поезда. Неплохой моделью такой механической системы является однородная балка, 

лежащая на двух опорах.  

Рассмотрим однородную горизонтальную 

балку  𝐴𝐵 (Рис. 2) массой  𝑚, покоящуюся на 

точечных опорах 𝐶 и 𝐷 (см. Рис. 2). Расстояния от 

центра масс 𝑂 (Рис. 2) балки до опор равны 𝑂𝐶 =
𝑙1, 𝑂𝐷 = 𝑙2. «Выступающие» края балки имеют 

длину  𝐴𝐶 = 𝑙3, 𝐷𝐵 = 𝑙4, соответственно. Площадь 

поперечного сечения балки постоянна.              

1.1 Найдите модули  𝑁1 и  𝑁2 сил реакций, действующих на балку в опорах  𝐶 и 𝐷, 

соответственно.  
 

1.2  Пусть в точку  𝐵  балки сел небольшой, но 

тяжелый жучок (Рис. 3) массой  𝑚1. Найдите 

изменения  ∆𝑁1 и ∆𝑁2 модулей сил реакций, 

действующих на балку в каждой из опор. Укажите 

знаки каждого из изменений. 

 

1.3 При какой минимальной массе жучка  𝑚2  сила 

реакции  𝑁1 , действующая на балку в левой опоре, обратится в нуль? 

gሬԦ 

𝐴 𝐵 

𝐶 𝐷 

𝑁ሬሬԦ1 
𝑁ሬሬԦ2 

Рис. 2 

𝑂 𝑙1 𝑙2 𝑙3 𝑙4 

gሬԦ 

𝐶 𝐷 Рис. 3 

𝑂 𝑙1 𝑙2 𝑙3 

𝑙4 

𝑚1 

𝑁1 + ∆𝑁1 
𝑁2 + ∆𝑁2 
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Часть 2. Длинный мост 
 

 

Пусть на железнодорожный мост длиной  𝐴𝐵 = 2𝑙0  въезжает поезд длиной  𝑙0  с 

одинаковыми вагонами (Рис. 4). 

Условимся считать такой поезд 

«однородным». Поезд полностью 

проезжает мост и оказывается на 

другом берегу реки.  

Рассмотрим систему в момент, 

когда поезд проехал по мосту 

расстояние  𝑥  (см. Рис. 4). Пусть в этот момент в опоре 𝐴 моста действует избыточная сила 

реакции 𝑁1(𝑥). Для удобства расчетов и описания системы  ведем безразмерные (приведенные) 

координаты для длины  𝑥∗ = 𝑥/𝑙0  и для избыточной силы реакции  𝑁1
∗(𝑥∗) = 𝑁1/(𝜆g𝑙0) в опоре 

моста,   где  𝜆 – линейная плотность поезда, g – ускорение свободного падения.  

Поскольку мост достаточно длинный, разобьем движение поезда на три этапа: выезд на мост 

(первый этап, 0 ≤ 𝑥∗ ≤ 1), движение по мосту (второй этап, 1 ≤ 𝑥∗ ≤ 2) и съезд с моста (третий 

этап, 2 ≤ 𝑥∗ ≤ 3).   
 

 

2.1 Получите зависимость избыточной силы реакции  𝑁1(𝑥) в опоре 𝐴 моста от  𝑥  на первом 

этапе. Выразите безразмерную зависимость  𝑁1
∗(𝑥∗) на этом же этапе. Рассчитайте полученную 

зависимость  𝑁1
∗(𝑥∗) для указанных точек и в листе ответов заполните Таблицу 1. 

 

2.2 Получите зависимость избыточной силы реакции  𝑁1(𝑥) в опоре 𝐴 моста от  𝑥  на втором 

этапе. Выразите безразмерную зависимость  𝑁1
∗(𝑥∗) на этом же этапе. Рассчитайте полученную 

зависимость  𝑁1
∗(𝑥∗) для указанных точек и в листе ответов заполните Таблицу 2. 

2.3 Получите зависимость избыточной силы реакции  𝑁1(𝑥) в опоре 𝐴 моста от  𝑥  на третьем 

этапе. Выразите безразмерную зависимость  𝑁1
∗(𝑥∗) на этом же этапе. Рассчитайте полученную 

зависимость  𝑁1
∗(𝑥∗) для указанных точек и в листе ответов заполните Таблицу 3. 

2.4 На Бланке 1 в Листе ответов постройте графики зависимостей  𝑁1
∗(𝑥∗) для всех трех этапов.  

2.5 Чему равна максимальная сила реакции   𝑁1
𝑚𝑎𝑥(𝑥)  на всех этапах движения поезда по 

мосту? При каком значении  𝑥1 она достигается?   

 

 

 

 

 

 

 

 

 

 

 

 

 
  

𝐴 𝐵 𝑥 
Рис. 4 
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Возможные решения: 
 

Часть 1.  Балка на опорах  
 

1.1 При равновесии балки выполняется правило моментов сил относительно оси, проходящей 

через любую точку системы.  

Запишем правило моментов относительно 

точки  𝐷 (Рис. 1) системы (момент силы 𝑁2 

относительно этой оси равен нулю) 

𝑁1(𝑙1 + 𝑙2) = 𝑚g𝑙2 .                   (1) 

Из (1) найдем силу реакции  𝑁1 

𝑁1 =
𝑙2

𝑙1+𝑙2
𝑚g .                                                             (2) 

Теперь рассмотрим равновесие балки относительно оси, проходящей через точку  𝐶  

системы (теперь момент силы  𝑁1 относительно этой оси равен нулю) 

𝑁2(𝑙1 + 𝑙2) = 𝑚g𝑙1 .                                                       (3) 

Из (3) найдем силу реакции  𝑁2 

𝑁2 =
𝑙1

𝑙1+𝑙2
𝑚g .                                                             (4) 

Заметим, что (4) можно получить и другим способом, используя (2) и правило сил  

𝑁1 + 𝑁2 = 𝑚g ,                                                             (5) 

откуда 

𝑁2 = 𝑚g − 𝑁1 = 𝑚g −
𝑙2

𝑙1+𝑙2
𝑚g = 

𝑙1

𝑙1+𝑙2
𝑚g .                                    (6) 

Интересно, что (2) и (4) не зависят от «выступающих» концов балки  𝑙3  и  𝑙4 , поскольку 

положение центра масс системы (между опорами) автоматически «учитывает» их действие и 

существование. ☺ 
 

1.2 Жучок (точнее, его сила тяжести 𝑚1g) 

увеличит силу реакции  𝑁2  в ближней опоре 𝐶 

(Рис. 2) системы (∆𝑁2 > 0) и, соответственно, 

уменьшит в дальней  𝑁1  (∆𝑁1 < 0). Запишем это 

следующим образом 

𝑁1
∗ = 𝑁1 − ∆𝑁1

𝑁2
∗ = 𝑁2 + ∆𝑁2

 .                                                             (7) 

Запишем правило моментов относительно оси, проходящей через точку  𝐷  системы 

𝑚g𝑙2 = (𝑁1 − ∆𝑁1)(𝑙1 + 𝑙2) + 𝑚1g𝑙4 .                                              (8) 

Из (8) получим 

∆𝑁1 =
𝑙4

𝑙1+𝑙2
𝑚1g .                                                           (9) 

Совершенно аналогично, рассматривая правило моментов относительно оси, проходящей 

через точку  𝐶 системы, найдем  

∆𝑁2 =
𝑙1+𝑙2+𝑙4

𝑙1+𝑙2
𝑚1g .                                                       (10) 

Заметим, что (10) можно получить и другим способом, используя (9) и правило сил  

∆𝑁2 − ∆𝑁1 = 𝑚1g ,                                                        (11) 

откуда 

gሬԦ 

𝐴 𝐵 

𝐶 𝐷 

𝑁ሬሬԦ1 
𝑁ሬሬԦ2 

Рис. 1 

𝑂 𝑙1 𝑙2 𝑙3 𝑙4 

gሬԦ 

𝐶 𝐷 Рис. 2 

𝑂 𝑙1 𝑙2 𝑙3 

𝑙4 

𝑚1 

𝑁1 − ∆𝑁1 
𝑁2 + ∆𝑁2 



Третий этап республиканской олимпиады по учебному предмету «Физика»  

2025/2026 учебный год 
 

8 

Теоретический тур.  Вариант 2.   

10 класс. Решения задач. Бланк для жюри. 
 

∆𝑁2 = 𝑚1g + ∆𝑁1 = 𝑚1g +
𝑙4

𝑙1+𝑙2
𝑚1g =

𝑙1+𝑙2+𝑙4

𝑙1+𝑙2
𝑚1g .                            (12) 

Как следует из (9) и (10), теперь результат не зависит от  𝑙3, поскольку жучок сел на 

правый конец соломинки. ☺  
 

1.3 Из (7) и (9) следует, что сила реакции   𝑁1
∗ = 𝑁1 − ∆𝑁1  обратится в нуль при минимальной 

массе жучка  𝑚2 при условии 

𝑁1 = ∆𝑁1      ⟹      
𝑙2

𝑙1+𝑙2
𝑚g =

𝑙4

𝑙1+𝑙2
𝑚2g .                                              (13) 

Следовательно,  

𝑚2  =
𝑙2

𝑙4
𝑚 .                                                             (14)  

 

Часть 2. Длинный мост 
 

2.1  Рассмотрим первый этап движения поезда по мосту (выезд, 0 ≤ 𝑥∗ ≤ 1). Пусть в некоторый 

момент на мосту оказалась часть 

поезда длиной  𝑥 (Рис. 3). 

 Поскольку рассматриваемый 

поезд «однородный», то на мосту 

находится его часть массой  

𝑚(𝑥) = 𝜆𝑥 ,                                                                

(15) 

где  𝜆 – линейная плотность поезда (масса единицы его длины). 

Соответственно, центр масс этого «куска» поезда находится на расстоянии  𝑙1 = 𝑥/2 от 

опоры 𝐴 моста и на расстоянии   𝑙2 = 2𝑙0 − 𝑥/2 от опоры  𝐵.   

Согласно (2) получим, что в этом случае искомая зависимость  равна 

𝑁1(𝑥) =
𝑙2

𝑙1+𝑙2
𝑚g =

2𝑙0−𝑥/2 

2𝑙0
𝜆𝑥g =

(4𝑙0−𝑥)𝑥 

4𝑙0
𝜆g ,                                 (16)                                       

где  g – ускорение свободного падения. 

Соответственно, для безразмерной зависимости  𝑁1
∗(𝑥∗) получим параболическую 

функцию 

𝑁1
∗(𝑥∗) =

𝑁1(𝑥)

𝜆g𝑙0
=

(4𝑙0−𝑥) 

4𝑙0

𝜆𝑥g

𝜆g𝑙0
=

(4−𝑥∗)𝑥∗

4
 .                                     (17) 

Используя (17) с помощью инженерного калькулятора заполняем Таблицу 1.  
 

Таблица 1.  
 

𝑥∗ 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 
𝑁1

∗(𝑥∗) 0,00 0,10 0,19 0,28 0,36 0,44 0,51 0,58 0,64 0,70 0,75 

 
 

2.2 На втором этапе движения поезда (1 ≤ 𝑥∗ ≤ 2, поезд целиком едет по мосту) 

координата его центра масс будет на расстоянии  (𝑙1 = 𝑥 − 𝑙0/2) от опоры 𝐴 моста и на 

расстоянии   (𝑙2 = 2𝑙0 − (𝑥 −
𝑙0

2
) = 2,5𝑙0 − 𝑥)  от его опоры  𝐵.   

       Опять же согласно (2) получим, что в этом случае искомая зависимость  равна 

𝑁1(𝑥) =
𝑙2

𝑙1+𝑙2
𝑚g =

2,5𝑙0−𝑥 

2𝑙0
𝜆𝑙0g,                                             (18)                                       

где  g – ускорение свободного падения. 

𝐴 𝐵 𝑥 
Рис. 3 
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Соответственно, для безразмерной зависимости  𝑁1
∗(𝑥∗) на этом этапе получим линейную 

функцию 

𝑁1
∗(𝑥∗) =

𝑁1(𝑥)

𝜆g𝑙0
=

2,5𝑙0−𝑥 

2𝑙0
𝜆𝑙0g =

2,5−𝑥∗

2
 ,                                     (19) 

где   𝑥∗ = 𝑥/𝑙0. 

Используя (19) с помощью инженерного калькулятора заполняем Таблицу 2.  
 

Таблица 2.  
 

𝑥∗ 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 
𝑁1

∗(𝑥∗) 0,75 0,7 0,65 0,6 0,55 0,5 0,45 0,4 0,35 0,3 0,25 
 

 

2.3 Наконец, при съезде с моста (третий этап, 2 ≤ 𝑥∗ ≤ 3) часть поезда длиной (𝑥 − 2𝑙0) уже 

находится на насыпи, и часть длиной  (𝑙0 − (𝑥 − 2𝑙0) = 3𝑙0 − 𝑥), соответственно, – еще на мосту. 

Расстояние от центра масс «мостовой» части поезда до опоры  𝐵 равно (3𝑙0 − 𝑥)/2.  

Следовательно, согласно (2),  получим, что в этом случае искомая зависимость  равна 

𝑁1(𝑥) =
𝑙2

𝑙1+𝑙2
𝑚g =

(3𝑙0−𝑥)

2

2𝑙0
𝜆(3𝑙0 − 𝑥)g =

(3𝑙0−𝑥)2 

4𝑙0
𝜆g .                          (20) 

Соответственно, для безразмерной зависимости  𝑁1
∗(𝑥∗) на этом этапе получим 

квадратичную функцию 

𝑁1
∗(𝑥∗) =

𝑁1(𝑥)

𝜆g𝑙0
=

(3𝑙0−𝑥)2 

4𝑙0

𝜆g

𝜆g𝑙0
=

(3−𝑥∗)2

4
 ,                                     (21) 

где   𝑥∗ = 𝑥/𝑙0. 

Используя (21) с помощью инженерного калькулятора заполняем Таблицу 3.  
 

Таблица 3.  
 

𝑥∗ 2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3 
𝑁1

∗(𝑥∗) 0,25 0,2025 0,16 0,1225 0,09 0,0625 0,04 0,0225 0,01 0,0025 0,00 
 

 

2.4 По таблицам 1-3 строим на бланке ответов полученную зависимость (Рис. 4) для всех трех 

этапов о 

 

2.5 По Таблицам 1-3 (или 

из графика) находим 

максимальное значение   

𝑁1
𝑚𝑎𝑥(𝑥) = 0,75𝜆g𝑙0.  (22) 

Оно достигается в момент, 

когда поезд только что 

полностью выехал на мост 

𝑥1 = 𝑙0.        (23) 

 

 

 

 

 
 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,5 1 1,5 2 2,5 3

𝑁1
∗

𝑥∗

Рис. 4
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Задание 10-3.  Звук и Гук 
 

Из простых опытов (Рис. 1) следует, что механические взаимодействия (и звук в том числе) 

передаются в упругой среде (пространстве) от точки 

к точке не мгновенно, а переносятся упругими 

волнами с конечной скоростью 𝑐 (𝑐 < ∞) за 

некоторый конечный промежуток времени.  

Интуитивно понятно, что скорость   

распространения упругих волн (звука) в данной 

среде  определяется такими её механическими 

характеристиками, как упругость  и инертность. 

В рамках данного задания вам предстоит более подробно разобрать процесс распространения 

упругих волн (звука) на достаточно простых моделях. 

Рассмотрим однородный упругий стержень (Рис. 2) начальной длиной 𝑙 и площадью 

поперечного сечения 𝑆, к свободному концу которого 

приложили силу  𝐹Ԧ. 

Под действием силы 𝐹Ԧ стержень удлинится 

(деформируется)  на некоторую величину  ∆𝑙 (∆𝑙 > 0), 

называемую абсолютной деформацией образца (см. Рис. 2).  

При деформации стержня в нем возникает обратная сила упругости 𝐹Ԧу, которая стремится 

скомпенсировать действие внешней силы  𝐹Ԧ.  

Согласно закону Гука, проекция силы упругости  𝐹у,  возникшая в стержне, при малых 

деформациях  (∆𝑙 ≪ 𝑙)  есть 

𝐹у = −𝑘∆𝑙 = 𝐹,                                                                  (1) 

где  𝑘 – коэффициент упругости стержня. 

Коэффициент упругости  𝑘 стержня зависит как от его «геометрии», так и от упругих свойств 

его материала  

𝑘 = 𝐸
𝑆

𝑙
 ,                                                                      (2) 

где  𝐸 – модуль Юнга (упругости) материала, из которого изготовлен стержень. 

Модуль Юнга материала является табличным данным и измеряется в  [𝐸] = Па = Н/м2. 

Действия силы тяжести и сил трения и сопротивления в данной задаче не учитывать.  
 

 

Справочные данные и параметры рассматриваемой системы: молярная газовая постоянная 

𝑅 = 8,31 
Дж

моль∙𝐾
, молярная масса воздуха 𝑀 = 29 

г

моль
, скорость звука в воздухе при температуре  

𝑡° = 20℃  равна  𝑐 = 343 (
м

с
),  𝜉 – греческая буква «кси». 

 

 

Часть 1. Скорость звука в упругом стержне  
 

Пусть упругий стержень 𝐴𝐵 налетает по нормали со 

скоростью 𝜐 на очень жесткую (недеформируемую) 

неподвижную стенку (Рис. 3). Плотность материала 

стержня  𝜌, его модуль Юнга (упругости) равен  𝐸.  

Сразу после механического контакта со стенкой по 

стержню (от стенки) начинает бежать продольная волна 

сжатия (возмущения) со скоростью звука  𝑐  (см. Рис. 3).  

При этом к некоторому моменту времени 

деформированной оказывается лишь часть 𝐷𝐵 стержня, 

𝑆 

𝑙 ∆𝑙 

𝐹Ԧ 

Рис. 2 

 

𝑐 𝜐 𝐴 𝐵 𝐷 
𝜐 = 0 

Рис. 3 
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до которой успела дойти волна упругого возмущения (см. Рис. 3). Будем считать, что частицы 

стержня в этой области  (𝐷𝐵) уже остановились  (𝜐 = 0) под действием сил упругости. 

Заметим, что в этот же момент времени другие частицы стержня (в его «дальней» части 𝐴𝐷) 

«как ни в чем не бывало» продолжают движение вперед (к стенке) с прежней скоростью  𝜐  (см. 

Рис. 3).               

1.1  Методом размерностей получите  формулу (с точностью до безразмерного коэффициента  𝜉) 

для скорости звука 𝑐 = 𝑐 (𝐸, 𝜌) в упругом стержне в зависимости его модуля упругости (Юнга)  

𝐸 и плотности 𝜌.  
 

1.2  Выведите скорость звука в упругом стержне, рассмотрев изменение импульса стержня в 

процессе столкновения с недеформируемой стенкой. Установите значение безразмерного 

коэффициента  𝜉. 

1.3  Найдите силу давления  𝐹д  стержня на стену, действующую в процессе удара (во время 

контакта стержня со стеной). 
 

 

Часть 2. Звук и Ньютон 
 

 

Скорость звука в газах впервые была рассчитана И. Ньютоном в его знаменитой работе 

«Математические начала натуральной философии» (1687 г.). 

Для этого ему необходимо было установить: какая величина 

играет роль модуля Юнга 𝐸 для газов? 

Рассмотрим идеальный газ под давлением 𝑝0 в 

неподвижной гладкой трубе 𝐴𝐵 длиной  𝑙  и площадью 

поперечного сечения 𝑆, запертый подвижным герметичным 

поршнем   𝐷 (Рис. 5, а)). 
 

 

2.1 Приложим к подвижному поршню силу 𝐹, сжимающую 

идеальный газ (Рис. 5, б)). Пусть под действием этой силы поршень сместился влево на  ∆𝑙 (∆𝑙 ≪

𝑙), а давление газа увеличилось до значения  (𝑝0 + ∆𝑝), причем ∆𝑝 ≪ 𝑝. Используя (1) и (2), 

выразите модуль Юнга  𝐸  газа внутри трубы через величины (∆𝑝, ∆𝑉, 𝑉), где  ∆𝑉 = 𝑆∆𝑙 есть 

изменение объема газа под действием силы, а  𝑉 = 𝑆𝑙 – начальный объем газа. 
 

2.2 Примем во внимание, что при рапространении волн (в том числе и звуковых) отсутсвует 

перенос вещества, т.е. маса выделенного объема газа в процессе сжатия (растяжения) остается 

постоянной (𝑚 = 𝜌𝑉 = 𝑐𝑜𝑛𝑠𝑡) при малых изменениях объема ∆𝑉 и плотности ∆𝜌 газа.  

Используя ранее полученные результаты,  докажите универсальную формулу для скорости звука 

в газах (и жидкостях) в виде  𝑐 = √
∆𝑝

∆𝜌
 , где  ∆𝑝 – изменение давления газа при его сжатии 

(разрежении), а  ∆𝜌 – соответствующее этому изменение плотности газа.  
 

2.3 Согласно предположению Ньютона процесс распространения звука в газе можно считать 

изотермическим (𝑇 = 𝑐𝑜𝑛𝑠𝑡). Получите формулу Ньютона для скорости звука в газах. 
 

2.4 По формуле Ньютона вычислите скорость звука в воздухе при температуре  𝑡° = 20℃. 

Сравните полученное значение с приведёнными данными. В чем, по Вашему мнению, «ошибся» 

Ньютон? 

 

 

𝑆 

𝑙 

∆𝑙 

𝐹Ԧ 

 

Рис. 5 

𝑝0 

𝑝0 + ∆𝑝 

а) 

б) 

𝐷 

𝐴 𝐵 
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Возможные решения: 
 

Часть 1.  Скорость звука в упругом стержне    
 

1.1 Учитывая размерности модуля Юнга [𝐸] = Па =
Н

м2
=

кг

м∙с2
  и плотности 𝜌 =

кг

м3
 из них 

можно составить только одну «композицию», имеющую размерность скорости:  𝑐 = √
𝐸

𝜌
 .  

Следовательно, с точностью до некоторого безразмерного коэффициента  𝜉  искомую формулу 

для скорости звука в стержне можно записать как 

  𝑐 = 𝜉√
𝐸

𝜌
.                                                                          (1) 

1.2 Рассмотрим столкновение стержня с воображаемой недеформируемой стеной. При этом за 

время ∆𝑡 остановилась часть стержня длиной 𝑙 = 𝑐∆𝑡 (куда добежал звук). Соответственно, за 

промежуток времени   ∆𝑡  погашен импульс  ∆𝑝 этого же участка стержня длиной  𝑙 = 𝑐∆𝑡 .  

Согласно второму закону Ньютона в импульсной форме 

                    ∆𝑝 = 𝐹∆𝑡.                                                                 (2) 

Погашенный импульс можно выразить как 

∆𝑝 = ∆𝑚𝜐 = 𝜌𝑆𝑙𝜐 = 𝜌𝑆(𝑐∆𝑡)𝜐,                                                 (3) 

где 𝑆 – площадь поперечного сечения стержня, 𝜐 – скорость стержня. 

Согласно закону Гука 

𝐹 = 𝑘∆𝑙 = 𝐸
𝑆

𝑙
∆𝑙 = 𝐸

𝑆

𝑙
(𝜐∆𝑡).                                            (4) 

Подставляя (3) и (4) в (2), получаем 

                     𝜌𝑆(𝑐∆𝑡)𝜐 = 𝐸
𝑆

𝑙
(𝜐∆𝑡)∆𝑡 = 𝐸

𝑆

𝑐∆𝑡
(𝜐∆𝑡)∆𝑡.                                      (5) 

Из (5) получаем искомую формулу для скорости продольный упругих волн в упругом 

стержне 

                                        𝑐 = √
𝐸

𝜌
 .                                                                       (6) 

Сравнивая (6) и (1), находим значение неизвестного безразмерного коэффициента 

                                        𝜉 = 1 .                                                                       (7) 

Следовательно, нам повезло, и методом размерностей мы сразу определили точную 

формулу для скорости звука в упругом стержне. 

1.3  Сила давления стержня на стену в процессе удара (во время контакта) найдется из (2) как 

 𝐹д =
∆𝑝

∆𝑡
=

𝜌𝑆(𝑐∆𝑡)𝜐

∆𝑡
= 𝜌𝑆𝑐𝜐 = 𝜐𝑆√𝜌𝐸.                                           (8) 

 

Часть 2. Звук и Ньютон 
 

2.1  Силу  𝐹 можно представить, с одной  стороны как силу упругости  (−𝑘∆𝑙), а с другой – как 

изменение силы давления газа  (∆𝑝𝑆) 

                    𝐹 = −𝑘∆𝑙 = ∆𝑝𝑆,                                                               (9) 

где  𝑘 = 𝐸
𝑆

𝑙
  – коэффициент упругости «газовой пружины».  

Из (9) получим 

𝐸
𝑆

𝑙
∆𝑙 = −∆𝑝𝑆     ⟹     𝐸 = −

𝑙

∆𝑙
∆𝑝 = −

𝑉

∆𝑉
∆𝑝 = −𝑉

∆𝑝

∆𝑉
 .                          (10) 
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2.2  Подставляя (10) в (6), получаем для скорости звука в газе 

                                        𝑐 = √
𝐸

𝜌
= √

−𝑉
∆𝑝

∆𝑉

𝜌
= √−

𝑉

𝜌

∆𝑝

∆𝑉
 .                                                       (11) 

Знак «–» под корнем в (11) вызывает опасения лишь «на первый взгляд». Действительно, 

если, например, давление газа увеличивается (∆𝑝 > 0), то его объем будет уменьшаться (∆𝑉 > 0). 

Таким образом, подкоренное выражение “автоматически” останется положительным.     

Поскольку при распространении  звука переноса вещества нет, то для некоторого 

выделенного объема сплошной среды должно выполняться равенство  

                    𝑚 = 𝜌𝑉 = (𝜌 + ∆𝜌)(𝑉 + ∆𝑉).                                                 (12) 

Из (12) найдем (пренебрегая бесконечно малыми более высокого порядка) 

∆𝜌𝑉 + 𝜌∆𝑉 = 0     ⟹      𝑉 = −𝜌
∆𝑉

∆𝜌
.                                           (13) 

Подставляя (13) в  (11), получаем  

                                        𝑐 = √−
𝑉

𝜌

∆𝑝

∆𝑉
= √−

1

𝜌

∆𝑝

∆𝑉
(−𝜌

∆𝑉

∆𝜌
) = √

∆𝑝

∆𝜌
 .                                        (14) 

 

2.3  Запишем уравнение состояния идеального газа в форме Клапейрона–Менделеева  

𝑝𝑉 =
𝑚

𝑀
𝑅𝑇 ,                                                                     (15) 

где  𝑀 – молярная маса газа,  𝑅 – молярная газовая постоянная.  

Выразим из (15) плотность газа 

𝜌 =
𝑚

𝑉
=

𝑝𝑀

𝑅𝑇
 .                                                                     (16) 

Возьмем приращения от обеих частей (14) при изотермическом процессе (𝑇 = 𝑐𝑜𝑛𝑠𝑡) 

∆𝜌 =
𝑀

𝑅𝑇
∆𝑝 .                                                                     (17) 

Тогда отношение соответствующих приращений равно  
∆𝑝

∆𝜌
=

𝑅𝑇

𝑀
 .                                                                        (18) 

С учетом (18) из (14) получаем формулу Ньютона для скорости звука в газе 

𝑐 = √
∆𝑝

∆𝜌
 =√

𝑅𝑇

𝑀
= √

𝑝

𝜌
.                                                               (19) 

2.4   Из (19) для воздуха (𝑀 = 29 
г

моль
) при температуре 𝑡° = 20℃ получаем значение скорости 

звука 

𝑐 = √
8,31∙293

29∙10−3 (
м

с
) = 290 (

м

с
) .                                                     (20) 

Поскольку скорость звука при такой температуре  𝑐 = 343 (
м

с
), то погрешность формулы 

Ньютона составляет величину порядка  15%. Причина такого значительного расхождения теории 

и эксперимента более ста лет оставалась непонятной. 

Лишь в начале XIX века Лаплас установил, что  просчет Ньютона заключался в том, что 

он считал процесс распространения звука изотермическим, тогда как он относится к 

адиабатическим процессам (уравнение адиабатного процесса было получено Пуассоном 

«только» в 1823 году). Ньютон же опирался на закон Бойля-Мариотта, открытый его 

современниками еще во второй половине XVII века. 



Третий этап республиканской олимпиады по учебному предмету «Физика»  

2025/2026 учебный год 
 

14 

Теоретический тур.  Вариант 2.   

10 класс. Решения задач. Бланк для жюри. 
 

Уточненная формула для адиабатного процесса (𝑝𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡) находится в превосходном 

согласии (!) с данными эксперимента для воздуха (𝛾 = 1,4) 

                             𝑐 =√
𝛾𝑅𝑇

𝑀
= 343 (

м

с
)  .                                                        (21) 

Тем не менее, даже «неточный» вывод Ньютоном формулы для скорости звука сыграл 

существенную роль в формировании общего подхода к описанию волновых процессов в 

сплошных средах. 

 

 

Контактный телефон для вопросов и консультаций в день проведения олимпиады: 

                                                  

                                           +375 29 766 12 87 

 


